Review of Chemical Principles and Fundamentals

1. Balance the following equations below.
a. $2 \mathrm{HCl}+1 \mathrm{Mg}(\mathrm{OH})_{2} \rightarrow 1 \mathrm{MgCl}_{2}+\quad 2 \mathrm{H}_{2} \mathrm{O}$
b. $1 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad 1 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\quad 3 \mathrm{H}_{2} \mathrm{O}$
c. $3 \mathrm{BaSO}_{4}+2 \mathrm{~K}_{3} \mathrm{PO}_{4} \rightarrow 1 \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{~K}_{2} \mathrm{SO}_{4}$
d. $4 \mathrm{~B}+3 \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{~B}_{2} \mathrm{O}_{3}$
2. What is the molar mass of a sample if a single molecule of it weighs $5.34 \times 10^{3} \mathrm{~g}$?
$3.22 \times 10^{\wedge} 27 \mathrm{~g} / \mathrm{mol}$
3. What is the mass percent of the elements in $\mathrm{Sr}\left(\mathrm{NO}_{2}\right)_{2}$?

Sr: 48.78\%

N: 15.60\%

O: 35.63\%
4. 0.314 mol of a diatomic molecule has a mass of 10.05 g . Identify the molecule.

O2
5. Calculate the volume of $0.642 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$ that should be used to make 1.00 L of 0.101 M KOH .

157 mL
6. Hard water is water that has high mineral content (mainly Calcium and Magnesium). A concentration above $5.30 \times 10^{-3} \mathrm{M}$ is considered to be very hard water. Assuming that there are no magnesium ions present, is a 0.400 L solution of 0.120 g CaCO 3 and $0.155 \mathrm{~g} \mathrm{CaSO}_{4}$ very hard water?
yes
7. For the following equation, determine the limiting reagent if 21.4 g of NH 3 is reacted with 42.5 g of O 2 .

$$
\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

O2
8. For the following reaction, how many grams of AICl 3 would be obtained if 5.43 g of aluminum and 7.80 g of hydrogen chloride (HCl) was used in the reaction?

$$
A l_{(s)} \quad+\quad H C l_{(a q)} \quad \rightarrow \quad A l C l_{3(a q)} \quad+\quad H_{2(g)}
$$

9.51 g
9. You think you synthesized 2-Nitrotoluene. You find that the molecular mass is $137.1 \mathrm{~g} / \mathrm{mol}$. You find that the empirical formula is $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$. Find the molecular formula of the compound you have synthesized.
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$
10. You analyze a sample and find that it contains, in a 23.1 g sample, $8.94 \mathrm{~g} \mathrm{C}, 2.25 \mathrm{~g} \mathrm{H}$, and 11.92 g O . Find the empirical formula of this compound.

CH3O
11. Determine the molecular formula of a compound with the following composition by mass: $18 \% \mathrm{C}, 2.5 \% \mathrm{H}, 63.5 \% \mathrm{I}, \mathrm{x} \% \mathrm{O}$, and a molar mass of $400 \mathrm{~g} / \mathrm{mol}$.
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{I}_{2}$
(8)

$$
\begin{aligned}
& \frac{2 \mathrm{Al}+6: \frac{\mathrm{HCl}}{\uparrow}}{\frac{5.43 \mathrm{~g}}{7.80 \mathrm{~g}}} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{~Hz}_{2} \\
& \frac{5.43 \mathrm{~g} \mathrm{Al}}{26.98 \mathrm{glmol} \mathrm{Al}}=0.201 \mathrm{~mol} \mathrm{Al}
\end{aligned}
$$

$7.80 \mathrm{~g} \mathrm{HCl}=0.214 \mathrm{~mol} \mathrm{HCl}$
$(1+35.45) \mathrm{g} / \mathrm{mol} \mathrm{HCl}$
$\frac{0.201 \mathrm{~mol} \mathrm{Al}}{2}=0.1 \quad$ VS. $\quad \frac{0.214}{6} \mathrm{~mol} \mathrm{HCl}=0.036$ smaller * HCl is limiting!

$$
\begin{aligned}
& 0.214 \mathrm{morHCl} \times \frac{2 \mathrm{mor} \mathrm{AlCl}_{3}}{6 \mathrm{molHCl}} \times \frac{(26.98+3(35.459) \mathrm{g}}{1 \mathrm{~mol}+\mathrm{Cl}_{3}} \\
& =9.51 \mathrm{~g}
\end{aligned}
$$

10. Determine the molecular formula of a compound with the following composition by mass: $18 \% \mathrm{C}, 2.5 \% \mathrm{H}, 63.5 \% \mathrm{I}, \mathrm{x} \% \mathrm{O}$, and a molar mass of $400 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& \frac{18 \mathrm{gC}}{12.01 \mathrm{~g} \mathrm{C/mol}}=1.50 \mathrm{~mol} \mathrm{C} \\
& \frac{2.5 \mathrm{gH}}{1 \mathrm{gH} / \mathrm{mol}}=2.48 \mathrm{~mol} \mathrm{H} \\
& \frac{63.5 \mathrm{gI}}{126.9 \mathrm{gII} / \mathrm{mol}}=0.50038 \mathrm{~mol} I \quad \leftarrow \text { smallest } \\
& \frac{16 \mathrm{~g} \mathrm{O}}{16 \mathrm{~g} \mathrm{O/mol}}=1 \mathrm{~mol} 0
\end{aligned}
$$

ans, tess empirical formula : $3 \mathrm{C}: 5 \mathrm{H}: 1 \mathrm{I}=20$

$$
\text { brroomovert }=0_{3} H_{5} \mathrm{O}_{2}
$$

$$
\text { molar mass }=199.937 \mathrm{~g} / \mathrm{mol}
$$

$$
\frac{400}{199.937}=\sim 2
$$

$\longrightarrow \times 2$ even subscript

$$
=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{O}_{4}
$$

