## Chemical Equilibrium Worksheet

1. For the following reaction, starting with reactant $A$, how do the concentrations of $A, B$, and C change with time before the reaction reaches equilibrium?

$$
A \leftrightarrow B+C
$$

2. The following equilibrium was studied at 973 K :

$$
2 \mathrm{SO}_{3} \leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}
$$

At this temperature, the value of Kc is $2.4 \times 10^{-3}$.
a. What is Kc for the following reaction at 973 K ?

$$
4 \mathrm{SO}_{3} \leftrightarrow 4 \mathrm{SO}_{2}+2 \mathrm{O}_{2}
$$

b. What is Kc for the following reaction at 973 K ?

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{SO}_{3}
$$

c. Given that all 3 reactions above involve the same compounds, and all the reactions are at equilibrium and same temperature, why are the equilibrium constant values different?
d. What is one important implication from part c?
3. For the following reaction:

$$
\mathrm{Ni}(\mathrm{CO})_{4} \leftrightarrow \mathrm{Ni}+4 \mathrm{CO}
$$

If the initial concentration of $\mathrm{Ni}(\mathrm{CO})_{4}$ is 1.0 M , and " x " is the equilibrium concentration of CO , what is the general expression for Kc , in terms of x ?
4. The Haber process is used to synthesize ammonia gas $\left(\mathrm{NH}_{3}\right)$ from nitrogen gas $\left(\mathrm{N}_{2}\right)$ and hydrogen gas ( $\mathrm{H}_{2}$ ).
a. A system at equilibrium contains $1.85 \mathrm{M} \mathrm{H}_{2}, 1.36 \mathrm{M} \mathrm{N}_{2}$, and $2.91 \times 10^{-3} \mathrm{M} \mathrm{NH}_{3}$ at constant temperature. What is $K_{c}$ ?
b. The volume is suddenly halved. What are the new concentrations for $\mathrm{N}_{2}, \mathrm{H}_{2}$, and $\mathrm{NH}_{3}$ ?
c. Given the new lower volume condition, which direction is the reaction going to proceed?
d. After the volume change, the system returns to equilibrium. What are the new EQUILIBRIUM concentrations for $\mathrm{N}_{2}, \mathrm{H}_{2}$, and $\mathrm{NH}_{3}$ ?
5. The equilibrium constant Kc equals 0.045 at 250 degree Celsius for the decomposition reaction:

$$
P C l_{5} \leftrightarrow P C l_{3}+C l_{2}
$$

Calculate the percentage of $P C l_{5}$ that dissociates if 0.05 mol of $P C l_{5}$ is placed in a closed vessel (constant volume) at 250 degrees Celsius and 2.00 atm.
6. If there are two positive "x" after solving for the quadratic equation, how do you determine which one to use when solving for final partial pressures?
7. For the following reaction: $\quad B r_{2} \leftrightarrow 2 B r$

What physical conditions favor the production of bromine atoms?
8. For the following reaction:

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \leftrightarrow 2 \mathrm{HI}
$$

The reaction is endothermic.
Kc at 25 C is $4.3 \times 10^{-5}$.

What (reactant or product) is favored in the following scenarios?
a. Temperature decreases.
b. Some HI is removed.
c. Small amount of $I_{2}$ is added.

