Midterm Prep Worksheet

1. A 245.7 g sample of a metal at 75.2 degrees Celsius was placed in 115.43 g of water at $22.6^{\circ} \mathrm{C}$. The final temperature of the water was $34.6^{\circ} \mathrm{C}$. Assuming no heat was lost to the surroundings, calculate the specific heat of the metal.
$0.581 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
2. A bowl containing 56 grams of ice cream is sitting out in the sun. The heat from the sun completely melts the ice cream and raises its temperature to $30^{\circ} \mathrm{C}$. Assuming that the ice cream was initially a solid with a freezing point at $0^{\circ} \mathrm{C}$, how much energy was supplied to the ice cream? ($\Delta H_{\text {fusion }}$ of ice cream is $210 \mathrm{~J} / \mathrm{g}$ and the specific heat capacity of liquid ice cream is $3.1 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)
$1.7 \times 10^{\wedge} 4 \mathrm{~J}$
3. Determine the reaction enthalpy for the hydrogenation of ethyne to ethane:

$$
\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}
$$

$$
\begin{aligned}
& \Delta H_{\text {combustion }}^{o} C_{2} H_{2(\mathrm{~g})}=-1300 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{\text {combustion }}^{o} C_{2} H_{6(\mathrm{~g})}=-1560 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{\text {combustion }}^{o} \quad H_{2(\mathrm{~g})}=-286 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$-312 \mathrm{~kJ} / \mathrm{mol}$
4. Under what conditions is the work done by the system equal to heat absorbed by the same system? Also state relevant equations.

T must be 0
5. 1.00 mol of an ideal gas is compressed reversibly at a constant temperature ($\mathrm{T}=500 \mathrm{~K}$) and $w=1000 \mathrm{~J}$. Find the following quantities for this process:
a. ΔU

0
b. q
-1000 J
c. $\frac{V_{f}}{V_{i}}$
0.786
d. $\Delta S_{g a s}$
$-2.00 \mathrm{~J} / \mathrm{K}$
e. $\Delta S_{\text {surrounding }}$

$$
+2.00 \mathrm{~J} / \mathrm{K}
$$

6. The reaction between gaseous iodoethane and water vapor generates ethanol and HI :

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(\mathrm{g})}+\mathrm{HI}_{(\mathrm{g})}
$$

36.00 g of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is converted to ethanol and HI gas completely. The initial volume of the system is 20 L . The internal energy change of the reaction is 84.00 kJ . The reaction occurs under constant pressure (1 atm) and room temperature ($25^{\circ} \mathrm{C}$).

$$
\begin{aligned}
& \Delta H_{f}^{o} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}=-241.82 / \mathrm{mol} \\
& \Delta H_{f}^{o} \mathrm{CH}_{3} \mathrm{CH}_{2} I_{(\mathrm{g})}=-51.39 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{f}^{o} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(\mathrm{g})}=-277.69 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Bond enthalpies:
H—O $463 \mathrm{~kJ} / \mathrm{mol}$
C—— $348 \mathrm{~kJ} / \mathrm{mol}$
H—-I $299 \mathrm{~kJ} / \mathrm{mol}$
C—-I 238 kJ/mol
a. Calculate work and heat of the reaction process.
$\mathrm{w}=0$
$q=84.00 \mathrm{~kJ}$
b. Is the reaction endothermic or exothermic?
endothermic
c. What is the enthalpy of the reaction for 1 mol of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$?
$42.00 \mathrm{~kJ} / \mathrm{mol}$
d. What is $\Delta H_{f}^{o} H I_{(g)}$?
$+26.48 \mathrm{~kJ} / \mathrm{mol}$
e. Answer the following regarding bond enthalpies:
i. Only two bonds are formed during the reaction. Which bond is formed during the reaction besides $\mathrm{H}-\mathrm{l}$?

ii. What is its bond enthalpy? $360 \mathrm{~kJ} / \mathrm{mol}$
7. Which of the following processes lead to an increase in entropy? Circle all that apply.
a. The pressure of 1 mole of O_{2} doubles isothermally.
b. CO_{2} expands isothermally to 10 times its original volume.
c. The temperature of 1 mol of He is increased to $25^{\circ} \mathrm{C}$ at constant pressure.
d. $\quad N_{2(g)}$ is compressed isothermally to half its original volume.
e. A glass of water loses 100 J of energy reversibly at $30^{\circ} \mathrm{C}$.
8. A crystal formed from 8 identical molecules can have 3 possible equal energy orientations. What is the minimum entropy for this system?
$1.21 \times 10^{\wedge}-22 \mathrm{~J} / \mathrm{K}$
9. What is the standard molar entropy of vaporization of water at 373 K given that the standard molar enthalpy of vaporization is $40.7 \mathrm{~kJ} / \mathrm{mol}$?
$109 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
10. A balloon filled with 0.150 moles of He gas expands isothermally from 3.3 L to 5.7 L . What is ΔS ?
$0.682 \mathrm{~J} / \mathrm{K}$
11. Another balloon expands from 3.3 L at 298 K to $9.2 \times 10^{5} \mathrm{~L}$ at 333 K . What is ΔS ?
$15.8 \mathrm{~J} / \mathrm{K}$

