```
1/6 Chemical equilibrium (EQ)
 reaction at equilibrium: R=P [R]&[P] do not change.
      at molecular level: rxn doesn't stop at equal rate.
 at E0: K_c = \frac{[P]}{[P]} more [P] \Rightarrow more stable the polt is
   under same conditions, rxn at EQ has same [IP] rate.
  (thermodynamic relation: &G° = -RTlnk (later))
 Ix n out Ea: aA + bB \neq cC + dD k_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}

\{a,b,c,d: stoichiometric coefficients of balanced equation.}
 [x] = concentration. (with units omitted.)
  (activity: more precise way to describe Kc, (though most)
     books makes it equal to concentration).
  ( ar = or [R] activity : no units.
  Ke doesn't have unit.
  eg: Calculate Kic for N2 mixed w/ H2 at 500°C to produce ammonia
           N2(9+3H2(9) = 2NH3 (9)
          at EQ: [N2] = 0.305 M, [H2] = 0.324 M, [NH3] = 0.796 M
      A: Kc = [NH3]2 = 61.0
if in reverse rxn: 2NH, (g) = N2(g) +3H2(g). Keep [x] the same.
          get: Konew = 1 = 1
```

1/8
· All R&P in same phase, homogeneous EQ
· One or more R or P in different phase: heterogeneous EQ (concentration) · Molar conc. of a Pure substance (solid or liquid) doesn't
change in a $r \times n \Rightarrow Pure substances$ are not included in K expression.
eg: $Ca(0H)_{2}(s) = (a^{2+}(ag_{1}) + 201-(ag_{2}) + (a^{2+})[0H^{-}]^{2}$
Do not put solvents into the rxn of.
H20 omitted: change in solvent conc. is insignificant.
· for a gas, use its partial pressure (p) and EQ constant is
denoted by Kp.
e.g: (aco3(s) = Cao(s) + co2(g) Kp = Pco2
Ptotal = E Ppartial
Ptotal = E Ppartial Kp = Pp R
· Convert between pairtial pressure & concentration for a gas:
ideal gas law: $PV = nRT$ (approx.) $\Rightarrow P = \frac{nRT}{V} = conc.*RT$
(P: Pressure (Pa.)
V: volume (L)
n: # moles. (mol)
R: 8.314 (mol· K) 5 = kg × m²/s²
R: 8.314 ($\frac{1}{\text{mol} \cdot \text{k}}$) $5 : \text{kg} \times \text{m}^2/\text{s}^2$ T: temperature (k)

EQ constant, (2, tells us
· If k is small $(k < 10^{-3})$ More reactants at Ed.
$R \stackrel{\sim}{\longrightarrow} P$ (EQ sits to the left)
k=1 is rare
Kis large (K>103) More polts at EQ
R P (Ed sits to the right)
intermediate values of K (10-3 < K < 103)
neither R nor P strongly favored
Use K to calculate the partial pressure (conc.) of a species
ot EQ
eg: PCl5(9) = PCl3(9) + Cl2(9) at 298 K
at ED Kp=25, Ppc15 = 0.0021 atm, Pc02 = 0.48 atm.
What is Ppg at ER.
· · · · · · · · · · · · · · · · · · ·
A: Kp: Prois Par Prois
⇒ Ppas = Kp. Ppas Pch.
Cly
$= \frac{25 \times 0.0021}{0.16} = 0.11 \text{ outm}$
0.48

Petermine the direction of a reaction will proceed.
$K_{c} = \frac{\Gamma_{B0}}{\Gamma_{B0}}$
$Q = \frac{\text{[P measured]}}{\text{[R measured]}} \text{ at a random time during the rxn}$ $\text{rxn quotient} \text{ and compare it } \text{w/} \text{K}$
If Q< K at some time during the rxn, then [R]>[P] -> forward rxn is favored.
Q=K at EQ.
Q>K at some time during the rxn, then [P]>[R]
⇒ reverse rxn is favored.
eg: nitrogen dioxide is produced by the rxn
$N_2Q_4(g) \rightleftharpoons 2NQ_2(g) = 1.7 \times 10^3$
When PNO2 = 0.5 outm and PN204 = 0.5 outm is the gystem out EQ
If not, which direction?
A: Q = PNO; 0.5 ² PNO; 0.5 ²
$Q < k_p \Rightarrow not at EQ, proceeds towards polits.$

1/10 e.g.: 150mol PCIs is placed in a 500 mL reaction vessel and
decomposes at 250°C to form PClz of Clz. Kc=1-80. All 3
compounds are gases at 200°C
Composition of the ER mixture? PCI=(g) = PCI=(g) + CI=(g)
A: Assume Polt decreased by x ms/L
ICE table
Polyig) = Polyig) + clvig)
] [·Samo] = 3.00M 0
C -x +x +x
$E 3-x \times k_c = \frac{x^2}{3.00-x} = 1.80$
$= 5.00 - \times 0^{\circ}$ $= 1.59$
[PC(5)= 3.00-1,59=1.41 M
_ 1
[Pclz]f = [clz]f = 1,59 M.
Day of TD to observe
- Response of Ed to change.
Change in conc. (K does not change)
Chemical rxn at EQ represents a fixed P/R ratio.
What happens when more reactant is added? Txn goes toward right
$R \rightleftharpoons P$ K means out EQ , the same $K = \frac{[P]}{[R]}$ Wait for the system to reach EQ again $(K is)$
K= [R] Wait for the system to reach EQ again (Kis
What happens when more polt is added? I'm goes toward left

what closes this tell us about chemical rxns?
Chemical rxns adjust so as to minimize the effect of changes. Le Chatelier's principle
$N_{2}(g) + 3H_{2}(g) \approx 2NH_{3}(g)$ What hoppens of we increase $N_{2} \Rightarrow left$
jincrease NHz ⇒ right. decrease 1-1> → right.
Who adding more reactants, how would you increase yield of NHz? Remove NHz
Le Chatclier's principle also applies to changing physical parameters (P&T)
· Change in pressure (K does not change) N2(9) +3H2(9) => NH2(9) How does a rxn respond to minimize the effect of increasing pressure (By decreasing volume)?
$\frac{1}{10000000000000000000000000000000000$
Volume is halfed, all conc. are doubled P is doubled.
$\frac{1}{1000} \cdot \frac{1}{1000} \cdot \frac{1}{10000} \cdot \frac{1}{100000} \cdot \frac{1}{100000} \cdot \frac{1}{100000} \cdot \frac{1}{1000000} \cdot \frac{1}{10000000000000000000000000000000000$
Then $Q = \frac{(0.2)^2}{0.2 \times (0.2)^3} = 25$
·· Q < k · rxn shifts right.

(Quick way:			
V decreases &	more moles of 90	s on left, then rxn, to change in pre change in conc.	shifts right.
The system	is NOT respond	to change in pre	ssure
	is respond to	change in conc.	
2.9-			
		pressure doubles, V rxn does NOT shi	