1/6 Chemical equilibrium ($E Q$)
reaction at equilibrium: $R \rightleftharpoons P[R] \&[P]$ do not change.
at molecular level: ran doesn't stop at equal rate. at $E Q: K_{c}=\frac{[p]}{[R]}$ more $[p] \Rightarrow$ more stable the $p d t$ is. under same conditions, $r \times n$ at $E Q$ has same $\frac{[p]}{[R]}$ rate. (thermodynamic relation: $\Delta G^{0}=-R T \ln k$ (later))
ran at $E Q: a A+b B \Rightarrow c C+d D \quad k_{c}=\frac{[c]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ $\left\{\begin{array}{l}a, b, c, d \text { : stoichiometric coefficients of balanced equation. } \\ {[x]=\text { concentration. }}\end{array}\right.$ $[x]=$ concentration. (with units omitted.)
(activity: more precise way to describe $K_{c_{1}}$ (though most) books makes it equal to concentration). $a_{R}=\gamma_{R}[R]$ activity : no units.
K_{c} doesn't have unit.
eg: Calculate k_{c} for N_{2} mixed ω / H_{2} at $500^{\circ} \mathrm{C}$ to produce ammonia

$$
\mathrm{N}_{2}\left(g+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)\right.
$$

at EQ:[$\left.N_{2}\right]=0.305 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.324 \mathrm{M},\left[\mathrm{NH} H_{3}\right]=0.796 \mathrm{M}$
$A: K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=61.0$
if in reverse $i_{x n}: 2 \mathrm{NH}_{3}(g) \rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$. keep $[x]$ the same.
get: $K_{c_{\text {new }}}=\frac{1}{K_{c}}=\frac{1}{61.0}$

1/8

- All R\&P in same phase homogeneous EQ
- One or more R or P in different phase : heterogeneous $E Q$
- Molar concent. of a Pure substance (said or liquid) doesn't change in a $r \times n \Rightarrow$ Pure substances are not included in k expression.
eg: $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{Oq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad K_{c}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
Do not put solvents into the ran eq
H w omitted change in solvent conc is insignificant. - Foragas, use its partial pressure (p) and $E Q$ constant is denoted by K_{p}.

$$
\begin{aligned}
& \text { egg: } \quad\left(a C O_{3}(s) \rightleftharpoons C a O(s)+\mathrm{CO}_{2}(g) \quad K_{p}=P_{\mathrm{CO}_{2}}\right. \\
& P_{\text {total }}=\sum P_{\text {partial }} \\
& K_{p}=\frac{P_{p}}{P_{R}}
\end{aligned}
$$

- Convert between partial pressure \& concentration for a gas. ideal gas law: $P V=n R T$ (approx.) $\Rightarrow P=\frac{n R T}{V}=\operatorname{conc} . \times R T$

$$
\left\{\begin{array}{l}
P: \text { pressure }(P a .) \\
V: \text { volume }(L) \\
n: \text { moles. }(\text { mol }) \\
R: 8.314\left(\frac{J}{\text { mol } \cdot k}\right) J=\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{s}^{2} \\
T=\text { temperature }(k)
\end{array}\right.
$$

EQ constant, k, tells us

- If k is small $\left(k<10^{-3}\right)$ More reactants at EQ.
$R \rightleftharpoons \leadsto P$ ($E Q$ sits to the left)
$k=1$ is rave
K is large $\left(K>10^{3}\right)$ More pots at $E Q$
$R \longrightarrow P$ ($E Q$ sits to the right)
intermediate values of $K\left(10^{-3}<K<10^{3}\right)$
neither R nor P strongly favored
Use K to calculate the partial pressure (conc.) of a species at EQ
eg: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at 298 K
at $E Q \quad K_{P}=25, P_{P C 1}=0.0021 \mathrm{~atm}, P_{C O_{2}}=0.48 \mathrm{~atm}$.
What is $P_{\mathrm{PCl}_{3}}$ at $E Q$.

$$
\begin{aligned}
A: \quad K_{p} & =\frac{P_{\mathrm{pal}_{3}} \cdot P_{\mathrm{cl}_{2}}}{P_{\mathrm{pal}_{5}}} \\
\Rightarrow P_{\mathrm{Pa}_{3}} & =\frac{K_{p} \cdot P_{\mathrm{pa}_{5}}}{P_{\mathrm{cl}_{2}}} \\
& =\frac{25 \times 0.0021}{0.48}=0.11 \mathrm{~atm}
\end{aligned}
$$

Determine the direction of a reaction will proceed.

$$
K_{C}=\frac{\left[P_{B Q}\right]}{\left[R_{E Q}\right]}
$$

$Q=\frac{[P \text { measured }]}{\left[R_{\text {measured }}\right]}$ at a random time during the $r \times n$ and compare it w / k

\Rightarrow reverse $r_{x n}$ is favored.
eg: nitrogen dioxide is produced by the run

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}=1.7 \times 10^{3}
$$

When $P_{\mathrm{NO}_{2}}=0.5 \mathrm{~atm}$ and $P_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.5 \mathrm{~atm}$ is the system at $E Q$ If not, which direction?
$A: Q=\frac{P_{\mathrm{NO}_{2}}{ }^{2}}{P_{\mathrm{N}_{2} 0_{4}}}=\frac{0.5^{2}}{0.5}=0.5^{\circ}$
$Q<k_{p} \Rightarrow$ not at $E Q$, proceeds towards pots.

1/10 ag. $1.50 \mathrm{~mol} \mathrm{PCl}_{5}$ is placed in a 500 mL reaction vessel and decomposes at $250^{\circ} \mathrm{C}$ to form PCl_{3} \& $\mathrm{Cl}_{2} . K_{0}=1.80$. All 3 compounds are gases at $250^{\circ} \mathrm{C}$
Composition of the EQ mixture? $\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
A: Assume PCl_{5} decreased by $\times \mathrm{mol} / \mathrm{L}$
ICE table

$$
\begin{aligned}
& \mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \\
& 1 \frac{1 . \operatorname{somul}}{0.5 \mathrm{~L}}=3.00 \mathrm{M} 00 \\
& C-x+x+x \\
& \text { E } 3-x \quad x \quad k_{c}=\frac{x^{2}}{3.00-x}=1.80 \\
& x=1.59 \\
& {\left[\mathrm{PCl}_{5}\right]_{f}=3.00-1.59=1.41 \mathrm{M}} \\
& {\left[\mathrm{PCl}_{3}\right]_{f}=\left[\mathrm{Cl}_{2}\right]_{f}=1.59 \mathrm{~m} .}
\end{aligned}
$$

- Response of $E Q$ to change.
- Change in conc. (K does not change)

Chemical ron at $E Q$ represents a fixed P / R ratio. What happens when more reactant is added? ran goes toward right

$$
R \rightleftharpoons P
$$ K means at $E Q$,

$K=\frac{[p]}{[R]}$ wait for the system to reach $E Q$ again (the san is What happens when more polt is added? nan goes toward left
\qquad
\qquad

What does this tell us about chemical runs?
Chemical $x \times n s$ adjust so as to minimize the effect of changes Le Chatelier's principle

$$
\mathrm{N}_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

What happens if we increase $\mathrm{N}_{2} \Rightarrow$ lett

$$
\begin{cases}\text { increase } \mathrm{N}_{2} & \Rightarrow \text { right } \\ \text { increase } \mathrm{NH}_{3} & \Rightarrow \text { right. }\end{cases}
$$

W/o adding more reactants, how would you increase yield of NH_{3} ? Remove NH_{3}
Le Chatelier's principle also applies to changing physical Parameters ($P \& T$)

- Change in pressure (k does not change) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \stackrel{\sim}{\sim} 2 \mathrm{H}_{2}(g)$ How does a xn respond to minimize the effect of increasing pressure (By decreasing volume)?
n constant $c=\frac{n}{V}$ conc. increases.
If initial conc. at $E Q$ is $\begin{array}{llllll} & 0.1 & 0.1 & 0.1 & \mathrm{M}\end{array}$

$$
\text { Then } k=\frac{\left[\mathrm{N}\left(\mathrm{H}_{2}\right]^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(0.1)^{2}}{0.1 \times(0.1)^{3}}=100 \text {. }
$$

Volume is halted, all conc. are doubled P is doubled.
\therefore New conc. $\Rightarrow 0.2,0.2,0.2 \mathrm{M}$
Then $Q=\frac{(0.2)^{2}}{0.2 \times(0.2)^{3}}=25$

$$
\therefore Q<k
$$

$\therefore r \times n$ shifts right.

Quick way:
V decreases \& more moles of gas on left, then in shifts right. The system is NOT respond to change in pressure is respond to change in conc.
egg.

\qquad

