- E°cen must be positive

- if you mulkply the vxn by coekcients to balance, Eo aces

not change

FINAL REVIEW WORKSHEET Winter 2021 14B woo ;-;

Estandard = 1.44 V reduced (cathode) (Ce4+ (aq) + e- \rightarrow Ce3+ (aq)

$$\mathfrak{C}$$
 $Co2+ (aq) + 2e- \rightarrow Co (s)$ Estandard = -.28 V oxidized (anode)

1a. Using the half reactions above, balance the following redox reaction and calculate E°

$$2Ce^{4+} + 2e^{-} + co \rightarrow 2Ce^{3+} + Co^{2+} + 2e^{-}$$

$$2Ce^{4+} (aa) + (o(s) \rightarrow 2Ce^{3+} (aa) + co^{2+} (aa)$$

1b. Calculate ΔG° and K = cull (+) = Spontaneous ΔG° man (-) = Spontaneous

$$= e^{\frac{1.72 \text{ V } (2)(96485 \frac{c}{mol})}{8.314 \text{ s/mol } (288 \text{ kc})}} = \frac{1.515 \times 10^{58}}{1.515 \times 10^{58}}$$

1c. When the voltage is 3.04V, what is the concentration of Co2+ (aq) when the concentrations N= moles of elections transferred in of Ce3+ (aq) / Ce4+ (aq) is .025 M?

E = 3.04 V

E: E° - RT en Q

Sawanic (21)

$$e^{\frac{nF(E \cdot E^{0})}{RT}} = \frac{[co^{24}][ce^{\frac{nT}{2}}]}{[co^{24}]}$$

$$[co^{24}] = e^{-\frac{1}{2}} \frac{(46485)(3.040 - 1.72 V)}{6.314 (248 E)}$$

$$= \frac{2.254 \times 10^{-45} \text{ M}}{2.254 \times 10^{-45} \text{ M}}$$

$$= \frac{2.254 \times 10^{-45} \text{ M}}{2.254 \times 10^{-45} \text{ M}}$$

$$= \frac{2.254 \times 10^{-45} \text{ M}}{2.254 \times 10^{-45} \text{ M}}$$

$$= \frac{2.254 \times 10^{-45} \text{ M}}{2.254 \times 10^{-45} \text{ M}}$$

1d. What is the change in cell potential when [Ce4+] = .015 M [Ce3+] = .010 M [Co2+] = .10 M

$$E = E^{\circ} - \frac{RT}{NF} \ln Q$$

$$= -\frac{8.314 (298.15)}{2(9648.5)} \ln \frac{(.10)(.010)^{2}}{(.015)^{2}}$$

$$= -6.39995 V$$

2. What would increase the pH of the following buffer solution which contains the conjugate acid/base pair: CH3COOH/CH3COO- buffer... any addition of acid/ban

(a.) Add NaCH3COO-Remove NaCH3COO-

Add CH3COOH

Add OH
Add H+

COO- butter... any addition of acid/bash will be neutralized be the conjugate acid/bash is present and they are weak

CH3COOH → CH3COOH + OH=

Ammonia Synthesis is described by the following unbalanced reaction

$$H2(g) + N2(g) \rightarrow NH3(g)$$
 25 degrees celsius $\Delta H_{ommonla}^{o} = -46.11$ FJ/mol

3a. Is this reaction exothermic or endothermic?

3b. Do you expect the K value to increase or decrease with an increase in temperature?

Atemp causes less product to form, 50 lower k value

Yasuda

3c. What is the
$$\Delta H r x n^{\circ}$$
? $\Delta H_{v k n}^{\circ} = \Delta H_{N k_{3}}^{\circ} - \Delta H_{N k_{3}}$

3d. What is the ratio of K1 to K2 when you raise the temperature to 425 K?

$$Ln \frac{K_{2}}{K_{1}} = \frac{\Delta H^{0}vxn}{R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right]$$

$$Ln \frac{K_{2}}{K_{1}} = \frac{-92.22 \times 10^{3} J}{8.314 \text{ J/mol.k}} \left[\frac{1}{298 \text{ k}} - \frac{1}{425 \text{ k}} \right]$$

$$\frac{K_{2}}{K_{1}} = .000014772 \qquad T_{1} \qquad T_{2}$$

$$\frac{K_{1}}{K_{2}} = 67696.32$$

3e. Does this mean the reaction yield increased or decreased with the increase in temperature?

$$\frac{K_1}{K_2}$$
: K_1 >>77 K_2
 $K = \frac{Corod1}{Creac}$

product yield decreases

at hight temp

4. [Winter 2019] Trichloroacetic acid is used in cosmetic treatments (such as chemical peels and tattoo removal) and as topical medication for chemoablation of warts. What is the pH of a concentrated stock solution when .500 moles of trichloroacetic acid are dissolved in water and diluted to 1.00 L?

1 .500 M O O

$$K_{A} = \frac{\left[CC(1_{3}COO - \right] \left[CH^{2}\right]}{\left[CC(1_{3}COO + \right]}$$

$$\frac{1.3 \times 10^{-1}}{.500 - X} = \frac{\left(\frac{x}{x}\right)(\frac{x}{x})}{.500 - X}$$

$$\frac{X^{2}}{X^{2}} = \frac{1.3 \times 10^{-1}}{.500 - X}$$

$$X^{2} = \frac{1.3 \times 10^{-1}}{.500 - X}$$

$$X^{2} + \frac{1.3 \times 10^{-1}}{.500 - X} = 0$$

$$X^{2} + \frac{1.3 \times 10^{-1}}{.500 - X} = 0$$

$$X = -\frac{1.3 \times 10^{-1}}{.500 - X} = 0$$

$$X = -\frac{1.3 \times 10^{-1}}{.500 - X} = 0$$

$$X = -\frac{1.3 \times 10^{-1}}{.500 - X} = 0$$

ANSWER:

5. What is the function of the porous disk?

cell, ions not involved in the ran [ci-ions] in a galvanic to prevent charge buildup cah pass mongh ne disk HALF RXN

$$Fc^{34} + 3c^{-} \rightarrow Fc \neq 6$$

$$\bullet 6. Fe3+ (aq) + e \rightarrow Fe2+ (aq)$$

$$\bullet Fe2+ (aq) + 2e \rightarrow Fe (s)$$

Calculate the standard potential for the reaction above using the reduction potentials given in the table.

Q1 on worksheet: Eocan always positive ALL BATTERIES/GALVANIC CELLS Q6. Half YXD... mis Ykn Fe3++36 -> Fe is nor in battery so can be neg.

①
$$\Delta G = -NFE = -1(9648S)(.77)$$

Fe³⁺ +e⁻ $\rightarrow Fe^{4+}$
 $= -74.3 \, \text{kJ}$

② $\Delta G = -NFE = -2(9648S)(-.444V)$

Fe³⁺ + 3e⁻ $\rightarrow Fc = 84.9 \, \text{kJ}$
 $= 84.9 \, \text{kJ}$

$$\Delta G_{10T} = 10.6 \times (0^3 \text{ J} = 10.6 \times \text{J}$$

$$E = -\frac{\Delta G}{NF} = -\frac{10.6 \times (0^3 \text{ J})}{3(96485)}$$

Yasuda

18.5°C : 291.65 K
28.1°C = 301.25 K

$$Cv: N_2 = diatomic = \frac{s}{2}R$$

ideal : $\frac{s}{2}R$

7. [Midterm W19] During the test of an internal combustion engine, 3.00 L of nitrogen gas (1.00 mol N2 gas) at 18.5 degrees Celsius compressed suddenly (and irreversibly) to .500 L by driving in a piston. In the process the temperature of the gas increased to 28.1 degrees Celsius. Assume ideal behavior. What is the change in entropy of the gas?

$$\Delta S TOT = \Delta S_{VI \to V2} + \Delta S_{Ti} \to T2$$

$$= NRLN \frac{V2}{V_i} + NC_V LN \frac{T_L}{T_i}$$

$$= 1mol (8.314 \frac{T}{mol \cdot k}) LN (\frac{.500L}{3.00L}) + (1.00 mo) (\frac{1}{2} (8.314 \frac{T}{mol \cdot k}) LN (\frac{.500L}{291.65})$$

$$= -14.2 T/K$$

8. Answer the following question based off of this reaction mechanism:

STEP 1 (rapid equilibrium):
$$H^+ + I^- \rightarrow HI$$

STEP 2 (SLOW): $HI + H2O2 \rightarrow H2O + HOI$

STEP 3 (FAST): $HOI + I^- \rightarrow I2 + OH^-$

STEP 4 (FAST): $OH^- + H^+ \rightarrow H2O$

TUAW 3W

8a. List the intermediate(s) products but consumed sign after HI, HOI, OH^-

- 8b. What is the molecularity of Step 2? bimolecular
- 8c. Write the overall reaction $2H^+ + 2I^- + H_2O_L \longrightarrow lH_LO + I_2$

vate law => rate = |cz [HzOz][HI] => step

Forward rate

Reveise

FAST => rate = K, [H][I]
STEP

rate = k? [HI]

K' [4,][I-] = K', [HI]

rate = K2 [H201] (K) [H+)[I-]

rate = K [HIOI][H](I-] (

PPE -equilibrum

CONDITION: FAST STEP BFFORE SLOW STEP Slow Step = rate determining step

- (1) Write the rate law for slow step
- 2) if Intermediates are present in answer for 1)

 Then write forward and reverse rate have

 for me fast step before it
 - 3 Equate rate law forward to rate law revern
 - into slow step rate law